PZT2222A

NPN Silicon Planar Epitaxial Transistor

This NPN Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- PNP Complement is PZT2907AT1
- The SOT-223 Package Can be Soldered Using Wave or Reflow
- SOT-223 Package Ensures Level Mounting, Resulting in Improved Thermal Conduction, and Allows Visual Inspection of Soldered Joints
- The Formed Leads Absorb Thermal Stress During Soldering, Eliminating the Possibility of Damage to the Die
- Available in 12 mm Tape and Reel
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

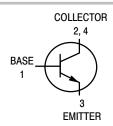
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage (Open Collector)	V _{EBO}	6.0	Vdc
Collector Current	Ic	600	mAdc
Total Power Dissipation up to T _A = 25°C (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Junction Temperature	T_J	150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

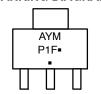
Device mounted on an epoxy printed circuit board 1.575 inches x 1.575 inches x 0.059 inches; mounting pad for the collector lead min. 0.93 inches².

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	T _L	260 10	°C Sec



ON Semiconductor®


www.onsemi.com

SOT-223 PACKAGE NPN SILICON TRANSISTOR SURFACE MOUNT

MARKING DIAGRAM

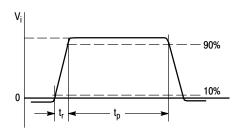
A = Assembly Location

Y = Year
M = Month Code
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
PZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
SPZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
PZT2222AT3G	SOT-223 (Pb-Free)	4,000 Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PZT2222A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
DFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{BEX}	-	20	nAdd
Collector–Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{CEX}	-	10	nAdd
Emitter-Base Cutoff Current (V _{EB} = 3.0 Vdc, I _C = 0)	I _{EBO}	-	100	nAdd
Collector-Base Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}\text{C})$	I _{CBO}		10 10	nAdo μAdo
ON CHARACTERISTICS	•	•	•	
DC Current Gain $ \begin{aligned} &(I_C = 0.1 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 1.0 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \\ &(I_C = 150 \text{ mAdc, } V_{CE} = 1.0 \text{ Vdc}) \\ &(I_C = 500 \text{ mAdc, } V_{CE} = 10 \text{ Vdc}) \end{aligned} $	h _{FE}	35 50 70 35 100 50 40	- - - - 300 -	_
Collector–Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{CE(sat)}	- -	0.3 1.0	Vdc
Base-Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}$, $I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.6	1.2 2.0	Vdc
Input Impedance $ (V_{CE} = 10 \text{ Vdc, } I_{C} = 1.0 \text{ mAdc, } f = 1.0 \text{ kHz}) $ $ (V_{CE} = 10 \text{ Vdc, } I_{C} = 10 \text{ mAdc, } f = 1.0 \text{ kHz}) $	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{re}	- -	8.0x10 ⁻⁴ 4.0x10 ⁻⁴	-
Small–Signal Current Gain $(V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz})$	h _{fe}	50 75	300 375	-
Output Admittance (V_{CE} = 10 Vdc, I_{C} = 1.0 mAdc, f = 1.0 kHz) (V_{CE} = 10 Vdc, I_{C} = 10 mAdc, f = 1.0 kHz)	h _{oe}	5.0 25	35 200	μmhc
Noise Figure (V_{CE} = 10 Vdc, I_{C} = 100 μ Adc, f = 1.0 kHz)	F	-	4.0	dB
DYNAMIC CHARACTERISTICS				
Current–Gain – Bandwidth Product ($I_C = 20 \text{ mAdc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f _T	300	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _c	-	8.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_C = 0$, $f = 1.0 \text{ MHz}$)	C _e	_	25	pF
SWITCHING TIMES $(T_A = 25^{\circ}C)$				
Delay Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _d	-	10	ns
Rise Time I _{B(on)} = 15 mAdc, V _{EB(off)} = 0.5 Vdc) Figure 1	t _r	_	25	
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$	t _s	_	225	ns
$I_{B(on)} = I_{B(off)} = 15 \text{ mAdc}$	1 3	Ī	Ī	Ī ,

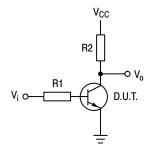
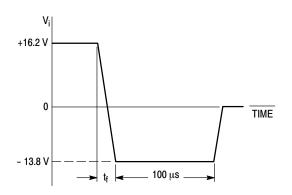



Figure 1. Input Waveform and Test Circuit for Determining Delay Time and Rise Time

 V_{i} = - 0.5 V to +9.9 V, V_{CC} = +30 V, R1 = 619 $\Omega,$ R2 = 200 $\Omega.$

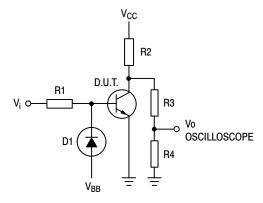


Figure 2. Input Waveform and Test Circuit for Determining Storage Time and Fall Time

TYPICAL CHARACTERISTICS

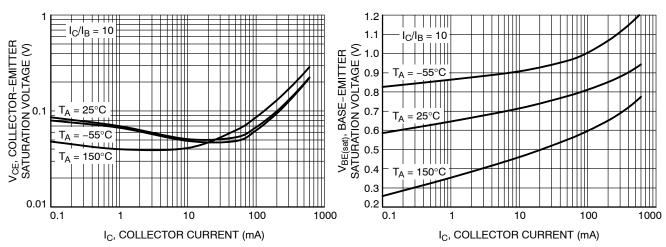


Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

PZT2222A

TYPICAL CHARACTERISTICS

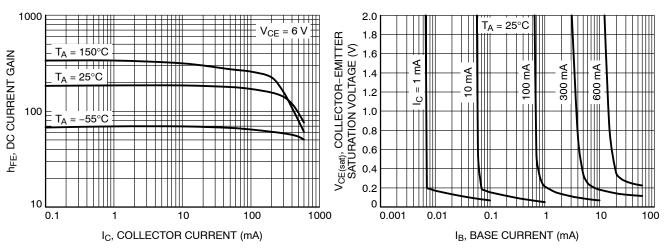


Figure 5. DC Current Gain vs. Collector Current

Figure 6. Saturation Region

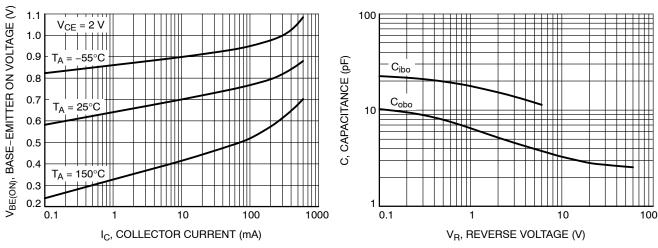
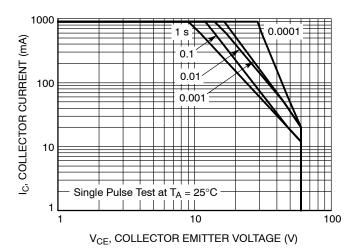
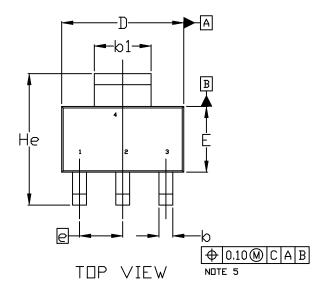
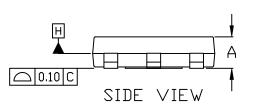
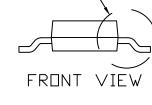


Figure 7. Base–Emitter Turn–On Voltage vs.
Collector Current

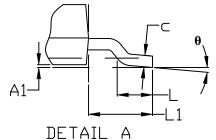
Figure 8. Capacitance

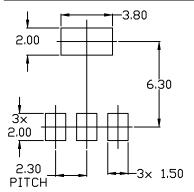




Figure 9. Safe Operating Area



SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018


SEE DETAIL A

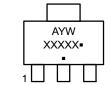
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
Ø	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
U	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

 $XXXXX \ = Specific \ Device \ Code$

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

PZT2222AT1G PZT2222AT3G