ALUMINUM ELECTROLYTIC CAPACITORS SPECIFICATION SHEET

Halogen Free

CUSTOMER PART No.		
Rubycon PART No.	YXJ SERIES (Oprion Code : FFC)	
DRAWING No.	RER - 200171	ISSUE No.
ISSUE DATE	3 October 2016	

1938-1, NISHIMINOWA, INA-SHI, NAGANO-KEN, JAPAN TEL No. 0265-72-7116 FAX No. 0265-73-3380

	HIROKI KOMATSU
DESIGN	H. Komatan
	TOSHIHIRO KOIKE
CHECK	Thaike
	Matre
	TAKESHI KOBAYASHI

Aluminum electrolytic capacitors Specification Sheet

Rubycon YXJ SERIES

<u>Drawing No. : RER - 200171</u>

Issue	No	3
ISSUE	INO.	J

SIONS			1st. ISSUE	4 Dec	. 2014
REVISION MARK	DATE	DESCRIPTION		CH.	APP.
	12 Jan. 2016	•Revised according as customers request.		T.K	H.K.
	3 Oct. 2016	Changed Format. Added Halogen free Specification		T.K	T.K
		- rance rance of the rance of t			
	REVISION MARK	REVISION DATE 12 Jan. 2016	REVISION DATE DESCRIPTION 12 Jan. 2016 •Revised according as customers request.	REVISION MARK DATE DESCRIPTION 12 Jan. 2016 • Revised according as customers request. • Changed Format.	REVISION MARK DATE DESCRIPTION CH. 12 Jan. 2016 •Revised according as customers request. -Changed Format.

Page 1/10

Rubycon | Aluminum electrolytic capacitors Specification Sheet | YXJ SERIES |

Drawing No.: RER-200171

Issue No. : 3

1.Scope.

This specification covers polarized aluminum electrolytic capacitors with non-solid electrolyte for use in electronic equipments.

2. Reference Standard

JIS C 5141 (1991) and JIS C 5102 (1994) methods for testing.

3. Operating Temperature Range

-40°C to +105°C

4. Performance Refer to Table-2

5. Style and Numbering System

(1) Style CE 04 (Radial Leaded)

(2) Numbering System Nominal Rated Series Tolerance Option Lead Case size Voltage Capacitance Forming YXJ M **FFC**

6. Marking

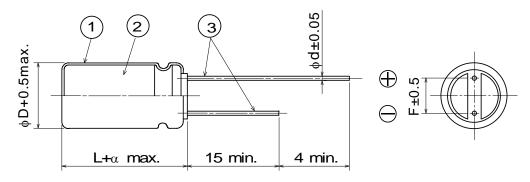
Unless otherwise specified, capacitor shall be clearly marked the following items on its body.

Sleeve color: Black Lettering color: White

(1) Trade mark
(2) Rated Voltage
(3) Nominal Capacitance
(4) Polarity
(5) Series

V
(Negative Polarity)

(6) Lot Number
(7) Maximum Operating Temperature
(8) PET Sleeve mark
105°C
PET


7. Vent

On capacitors whose diameter is 6.3mm and greater, a safety vent shall be provided.

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : RER-200171
Issue No. : 3

8. Diagram of dimensions. :unit mm

φD	5	6.3	8	10	12.5	16
фd	0.5		0.6			0.8
F	2.0	2.5	3.5 5.0		7.5	
α		L≤16 :	α=1.5	L≥20 :	α=2.0	

1	Sleeve	P.E.T.
0	Case	Aluminum
3	Lead Wire	Tin plated

9. Standard size

◆Table-1 Standard size, Maximum permissible ripple current and Impedance, ESR

Rated voltage 10V (1A)					
Nominal capacitance	minal capacitance Size Ripple Current (μF) φDxL(mm) (mA r.m.s./105°C,100kHz)	Ripple Current	Impedance and ESR (ΩMAX)		
(μ F)		20°C,100kHz	-10°C,100kHz		
100	5X11	150	0.90	3.6	
220	5X11	250	0.40	1.2	
330	6.3X11	400	0.22	0.87	
470	6.3X11	400	0.22	0.87	
1000	10X12.5	865	0.080	0.32	
2200	10X20	1400	0.046	0.18	
3300	12.5X20	1900	0.041	0.14	
4700	12.5X25	2230	0.032	0.11	
6800	16X25	2930	0.021	0.060	
10000	16X31.5	3450	0.019	0.056	

Rated voltage 16V (1C)					
Nominal capacitance	Size	Ripple Current	Impedance and ESR (ΩMAX)		
(μF)	$\phi DxL(mm)$	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz	
47	5X11	250	0.40	1.2	
100	5X11	250	0.40	1.2	
220	6.3X11	400	0.22	0.87	
330	6.3X11	400	0.22	0.87	
470	8X11.5	640	0.13	0.52	
1000	10X16	1210	0.062	0.25	
2200	12.5X20	1900	0.041	0.14	
3300	12.5X25	2230	0.032	0.11	
4700	16X25	2930	0.021	0.060	
6800	16X31.5	3450	0.019	0.056	

Aluminum electrolytic capacitors Specification Sheet

Issue No. : 3

Drawing No.: RER-200171

Rated voltage 25V (1E)					
Nominal capacitance	Size	Ripple Current	Impedance and	ESR (ΩMAX)	
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz	
33	5X11	250	0.40	1.2	
47	5X11	250	0.40	1.2	
100	5X11	250	0.40	1.2	
220	6.3X11	400	0.22	0.87	
330	8X11.5	640	0.13	0.52	
470	10X12.5	865	0.080	0.32	
1000	10X20	1400	0.046	0.18	
2200	12.5X25	2230	0.032	0.11	
3300	16X25	2930	0.021	0.060	
4700	16X31.5	3450	0.019	0.056	

Rated voltage 35V (1V)				
Nominal capacitance	ance Size Ripple Current		Impedance and	d ESR (ΩMAX)
(μ F)	$\phi DxL(mm)$	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
33	5X11	250	0.40	1.2
47	5X11	250	0.40	1.2
100	6.3X11	400	0.22	0.87
220	8X11.5	640	0.13	0.52
330	10X12.5	865	0.080	0.32
470	10X16	1210	0.062	0.25
1000	12.5X20	1900	0.041	0.14
2200	16X25	2930	0.021	0.060
3300	16X31.5	3450	0.019	0.056

	Rated voltage 50V (1H)				
Nominal capacitance	Size	Ripple Current	Impedance and ESR (ΩMAX)		
(μF)	$\phi DxL(mm)$	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz	
1	5X11	30	4.0	8.0	
2.2	5X11	43	2.5	6.0	
3.3	5X11	53	2.2	5.6	
4.7	5X11	88	1.9	5.0	
10	5X11	100	1.5	4.0	
22	5X11	180	0.70	2.8	
33	5X11	250	0.70	2.8	
47	6.3X11	295	0.30	1.2	
100	8X11.5	555	0.17	0.68	
220	10X16	1050	0.084	0.34	
330	10X20	1220	0.060	0.24	
470	12.5X20	1660	0.045	0.15	
1000	16X25	2730	0.032	0.096	
2200	16X35.5	3150	0.019	0.057	

Rubycon Aluminum electrolytic capacitors Specification Sheet YXJ SERIES

Drawing No. : RER-200171

Issue No. : 3

Rated voltage 63V (1J)				
Nominal capacitance	Size	Ripple Current	Impedance an	d ESR (ΩMAX)
(μF)	$\phi DxL(mm)$	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
10	5X11	173	0.88	3.5
22	5X11	173	0.88	3.5
33	6.3X11	278	0.35	1.4
47	6.3X11	278	0.35	1.4
100	10X12.5	725	0.15	0.60
220	10X20	1200	0.078	0.31
330	12.5X20	1570	0.060	0.19
470	12.5X25	1990	0.043	0.14
1000	16X25	2730	0.032	0.096

Rated voltage 100V (2A)							
Nominal capacitance	Size	Ripple Current	Impedance a	nd ESR (ΩMAX)			
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz			
1	5X11	20	4.5	15.0			
2.2	5X11	30	3.0	13.0			
3.3	5X11	40	2.7	11.0			
4.7	5X11	65	2.5	10.0			
10	6.3X11	267	0.57	2.3			
22	6.3X11	267	0.57	2.3			
33	8X11.5	462	0.36	1.4			
47	8X16	585	0.25	1.0			
100	10X20	1040	0.12	0.52			
220	12.5X25	1620	0.060	0.23			
330	16X25	2210	0.044	0.16			

Page 5/10

Rubycon YXJ SERIES

Aluminum electrolytic capacitors Specification Sheet

Issue No. : 3

Drawing No.: RER-200171

◆Table-2 PERFORMANCE

	ITEMS	PERFORMANCE							
	B . 11/1/ 0400								
1	Rated Voltage(WV) Surge Voltage (SV)	WV(V.DC) 10 16 25 35 50 63 100							
		SV(V.DC) 11.5 18.4 28.8 40.3 57.5 72.5 115							
2	Capacitance (Tolerance)	< Condition >							
3	Leakage Current	Condition> The rated voltage shall be applied between terminals of capacitor such that the terminal voltage will reach the rated voltage within one minute and the leakage current shall be measured at 2 minutes after the voltage has reached the rated voltage across a $1000 \pm 10 \Omega$ series protection resister. Then the current value shall not exceed value calculated from following formula. Criteria> $I=0.005CV$ where $I: Leakage current in \mu A$. $C: Nominal capacitance in \mu F$. $V: Rated voltage in V.DC$.							
4	Dissipation Factor (tan&:Tangent of loss angle)	<condition> See ITEM 2, Nominal Capacitance, for measuring frequency, voltage and temperature. <criteria></criteria></condition>							
5	Terminal Strength	Condition> Tensile Strength of Terminals The body of capacitor shall be fixed and the tensile force of following table shall be applied to the terminal in lead out direction of the terminal for 10±1 seconds. Bending Strength of Terminals The body of capacitor shall be held in such a way that the regular lead-out axis of lead wire terminal becomes vertical. The weight of following table shall be suspended from the end of terminal. In this condition, after the body of sample is bent through 90 degrees, it shall be returned to the original position. Next the body shall be reversibly bent through 90 degrees and again returned to the original position. Diameter of lead wire Tensile force N{kgf} N{kgf} 0.5mm and less S{0.51} 2.5{0.25} Over 0.5mm to 0.8mm incl 10{1.0} 5 {0.51}							
		Criteria> Notable changes shall not be found, as breakage or looseness in the terminal. Capacitance Change: Within $\pm 5\%$ of the initial value							

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : RER-200171

Issue No. : 3

6	Temperature
	Coefficient and Drift

<Condition>

STEP	Testing Temperature (°C)	Time
1	20±2	
2	-40±3	
3	-25±3	Time to reach thermal equilibrium
4	20±2	Time to reach thermal equilibrium
5	105±2	
6	20±2	

Capacitance, D.F. and Impedance shall be measured at 120Hz.

<Criteria>

STEP 2	Capacitance Change	Within ±20% of the value of STEP 1			
	Impedance Ratio	The value of ratio to STEP 1 not more than value of			
		following table.			
STEP 3	Impedance Ratio	The value of ratio to STEP 1 not more than value of following table.			
STEP 5	Capacitance Change	Within ±25% of the value of STEP 1			
	Dissipation Factor	Not more than the specified value			
	Leakage Current	Not more than 8 times the specified value			
STEP 6	Capacitance Change	Within ±10% of the value of STEP 1			
	Dissipation Factor	Not more than the specified value			
	Leakage Current	Not more than the specified value			

WV(V.DC)	10	16	25	35	50	63	100
Z(-25°C)/Z(+20°C)	3	2	2	2	2	2	2
Z(-40°C)/Z(+20°C)	5	4	3	3	3	3	3

7 Load Life Test

<Condition>

Capacitor under the test shall be applied the rated voltage continuously through 1000 Ω series protective resistor at 105±2°C for following test period. After the test and returned in standard condition for 1 to 2 hours, and the capacitor shall meet following requirements.

Case dia	Life time			
Case dia	10WV	16 to 100WV		
ф5, ф6.3	5000 ⁺⁷² 0	5000 ⁺⁷² 0		
ф8, ф10	6000 +72	7000 +72		
φ12.5 to φ18	8000 +72	10000 +72		

<Criteria>

Leakage Current	Not more than the specified value
Capacitance Change	Within ±20% of the initial value
Dissipation Factor	Not more than 200% of the specified value
ESR	Not more than 300% of the specified value
Appearance	Notable changes shall not be found, except sleeve

Page 7/10

Rubycon YXJ SERIES

Aluminum electrolytic capacitors Specification Sheet

Issue No. : 3

Drawing No.: RER-200171

İ								
8	Shelf Life Test	returned in standard condi	red at 105±2°C with no voltage applied for 96 hours. After the test and ition for 1 to 2 hours and the capacitor shall meet following requirements. (If adgment, the capacitors shall be subjected to voltage treatment specified in					
		Orithania.						
		<criteria> Leakage Current</criteria>	Not more than 120% of the specified value					
		Capacitance Change	Within ±10% of the initial value					
		Dissipation Factor	Not more than 150% of the specified value					
		Appearance	Notable changes shall not be found					
9	Load Life with ripple Test	protective resistor (with m	st shall be applied the rated voltage continuously through 1000 Ω series naximum ripple current) at 105±2°C for 1000 $^{+48}_{0}$ hours. After the test and tion for 1 to 2 hours, and the capacitor shall meet following requirements.					
		<criteria></criteria>						
		Leakage Current	Not more than the specified value					
		Capacitance Change	Within ±20% of the initial value					
		Dissipation Factor	Not more than 200% of the specified value					
		ESR	Not more than 300% of the specified value					
		Appearance	Notable changes shall not be found, except sleeve					
10	Surge Voltage	for 30±5 seconds in ever	and the surge voltage through a $(100\pm50)/C_R$ [k Ω] resistor in series by 6 \pm 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Since (μF)]					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shall	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement.					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shal [C _R : Nominal Capacitan	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement.					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shal [C _R : Nominal Capacitan	ry 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Line (μF)]					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shal [C _R : Nominal Capacitar < Criteria> Leakage Current	ry 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Ince (μF)] Not more than 120% of the specified value					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shal [C _R : Nominal Capacitan < Criteria> Leakage Current Capacitance Change	ry 6 ± 0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Index (μ F)] Not more than 120% of the specified value Within $\pm10\%$ of the initial value					
10	Surge Voltage	Capacitor shall be applie for 30±5 seconds in evel Then the capacitors shal [C _R : Nominal Capacitan < Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance	ry 6 ± 0.5 minutes at 15 to 35° C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Index (μ F)] Not more than 120% of the specified value Within $\pm10\%$ of the initial value Not more than 150% of the specified value					
10	Surge Voltage Vibration Test	Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shall [C _R : Nominal Capacitan < Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance This test simulates over valways applied. Condition> Testing shall be done ou Fix lead wire at a point one with a diameter 12.5m Vibration frequency range	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Ince (μF)] Not more than 120% of the specified value Within ±10% of the initial value Not more than 150% of the specified value Notable changes shall not be found roltage at abnormal situations, and not be hypothesizing that over voltage is that in 3 AXIS for 2 hours each (total 6 hours) as below. The not more than 4mm from the body , use mounting device separately for the internal greater or with a length 25mm and longer.					
		Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shall [C _R : Nominal Capacitan Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance This test simulates over valways applied. Condition> Testing shall be done out fix lead wire at a point one with a diameter 12.5m Vibration frequency range Peak to peak amplitude Sweep rate	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Indec (μF)] Not more than 120% of the specified value Within ±10% of the initial value Not more than 150% of the specified value Notable changes shall not be found roltage at abnormal situations, and not be hypothesizing that over voltage is that in 3 AXIS for 2 hours each (total 6 hours) as below. The not more than 4mm from the body, use mounting device separately for the time and greater or with a length 25mm and longer.					
		Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shall [C _R : Nominal Capacitan < Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance This test simulates over valways applied. Condition> Testing shall be done ou Fix lead wire at a point one with a diameter 12.5m Vibration frequency range Peak to peak amplitude Sweep rate Criteria>	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Index (μF)] Not more than 120% of the specified value Within ±10% of the initial value Not more than 150% of the specified value Notable changes shall not be found roltage at abnormal situations, and not be hypothesizing that over voltage is that in 3 AXIS for 2 hours each (total 6 hours) as below. The more than 4mm from the body, use mounting device separately for the im and greater or with a length 25mm and longer. e : 10 to 55Hz : 1.5mm : 10 to 55 to 10Hz, In about 1min.					
		Capacitor shall be applie for 30±5 seconds in ever Then the capacitors shall [C _R : Nominal Capacitan Criteria> Leakage Current Capacitance Change Dissipation Factor Appearance This test simulates over valways applied. Condition> Testing shall be done out fix lead wire at a point one with a diameter 12.5m Vibration frequency range Peak to peak amplitude Sweep rate	ry 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. If be left under normal humidity for 1 to 2 hours before measurement. Indec (μF)] Not more than 120% of the specified value Within ±10% of the initial value Not more than 150% of the specified value Notable changes shall not be found roltage at abnormal situations, and not be hypothesizing that over voltage is that in 3 AXIS for 2 hours each (total 6 hours) as below. The notes than 4mm from the body, use mounting device separately for the immand greater or with a length 25mm and longer. e : 10 to 55Hz : 1.5mm					

Page 8/10

Rubycon YXJ SERIES

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : RER-200171

Issue No. : 3

12	Solderability	<condition> Terminals of the capacitor shall be immersed in flux (ethanol solution of the rosin, 25 wt% rosin) for 5 to 10 seconds and shall be immersed in the solder bath (235±5°C) and held for 2±0.5 seconds, and pulled out at the same speed. <criteria> At least 90% of circumferential surface of dipped portion of the terminal shall be covered with new solder.</criteria></condition>							
13	Resistance to Solder Heat	at <condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°C for 10±1 seconds to 2.0mm from the body of capacitor. Then the capacitors shall be left under the normal temperature and normal humidity for 1 to before measurement.</condition>							
		Leakage Curre	ent No	t more than th	e specifie	ed value			
		Capacitance (thin ±5% of the					
		Dissipation Fa		t more than th	e specifie	ed value			
		Appearance	No	table changes	shall not	t be foun	nd		
		Capacitor shall be stored in the ambient of 40±2°C and relative humidity 90 to 95% for 240±8 hours. Then the capacitors shall be left under the normal temperature and normal humidity for 1 to 2 hours before measurement. Criteria> Leakage Current Not more than the specified value Capacitance Change Within ±15% of the initial value Dissipation Factor Not more than the specified value Appearance Notable changes shall not be found							
15	Maximum Permissible Ripple Current	(2)The combined voltage and sh	imum operating to value of D.C. volall not be reverse fficients uency(Hz) 1 to 330 330 to 1500 1500 to 10000 oefficients	temperature. Itage and the e voltage. 60(50) 0.35 0.45	120(0.0	C. voltage	1k 0.75 0.85 0.90		
		Coefficient ◇Temperature copassed through be nearly equal ◇Use of aluminur charge-discharg	pefficient shows a capacitor at e with the lifetime am electrolytic cape operation.	a limit of rippleach temperate at the rated monacitor under	1.7 e current ure when aximum or ripple vol	exceed the life operating Itage wit	ling the rate expectance g temperate th wide am	ey of a capaci ure. plitude is equ	tor becomes to ivalent to quick

Page 9/10

Rubycon YXJ SERIES

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : RER-200171

Issue	Nο	. 1	
13346	INO.		

16	High temperature high humidity shelf	<condition> Capacitors shall be stored in the ambient temperature of 85±2 °C and relative humidity of 80~85% for 1000 +48 hours. Then the capacitors shall be left under the normal temperature and normal humidity for 2~4 hours before measurement. Criteria> Leakage Current Not more than 120% of the specified value</condition>							
		Leakage Curren			•	ed value			
		Capacitance Ch			f the initial value				
		Dissipation Fact	or	+	150% of the specifie				
		Appearance		Notable change	es shall not be found	d			
17	Storage at low temperature	<condition> Capacitors shall be stored in the ambient temperature of -55±2 °C for 96 hours. Then the capacitors shall be left under the normal temperature and normal humidity for 2~4 ho before measurement. <criteria></criteria></condition>							
		Leakage Curren			120% of the specifie	value			
		Capacitance Ch			f the initial value				
		Dissipation Fact	or	Not more than	150% of the specifie	ed value			
18	Thermal shock	following table for the 5 cycles. Then the capacit	Capacitors shall be put into the chamber and held at the temperature of each step 1 to 2 shown in following table for the specified duration by turns. This operation is counted 1 cycle, and repeated for						
		STEP	Temp	erature (°C)	Duration				
		1		-40±2	30min.				
		2		85±2	30min.				
		<criteria></criteria>							
		Leakage Curren	t	Not more than	120% of the specifie	ed value			
		Capacitance Ch		Within ±10% of	f the initial value				
			Dissipation Factor Not more than 150% of the specified value						
				•					

Aluminum electrolytic capacitors Specification Sheet

Drawing No.: RER-200171 : 3

Issue No.

10. Halogen free Specification

All homogeneous materials within capacitor shall meet the criteria in the following table. A homogeneous material has uniform composition throughout and cannot be mechanically disjointed into different materials.

<Criteria>

Substances	Permissible Limit (by weight)
Bromine (Br)	≤900 ppm
Chlorine (CI)	≤900 ppm
Total concentration of Br+Cl	≤1500 ppm

Notes on use of aluminum electrolytic capacitors

(1) Charge and discharge

Do not use for the circuit that repeats quick charge or discharge.

(2) External stress

Do not apply excessive force of pushing, pulling bending, and/or twisting to the main body, lead wire and terminals.

(3) Heat resistance at soldering process

In the soldering process of PC board with Capacitors mounted, secondary shrinkage or crack of sleeve may be observed when soldering temperature is too high and /or soldering time is too long.

If lead wire of other components or pattern of double sided PC board touches the capacitor, the similar failure may be also originated at pre-heating, heating at hardening process of adhesive and soldering process.

(4) Insulation and PC board mounting

Sleeve is for marking purpose only.

It is not recognized as insulation materials.

When double sided PC board is employed, note that it could cause a short circuit if lead wire of other components or pattern of double sided PC board touches capacitor. Please avoid circuit pattern runs underneath capacitor.

In addition, case and cathode terminal are not insulated.

(5) Adhesives and coating materials

Do not use the adhesives and coating materials that contain halogenated organic solvents or chloroprene as polymer.

(6) Storage

Keep at a normal temperature and humidity. During a long storage time, leakage current will be increased. To prevent heat rise or any trouble that high leakage current possibly causes, voltage treatment is recommended for the capacitors that have been stored for a long time.

.<Storage Condition>

*Aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of humidity. The suitable storage condition is 5°C-35°C and less than 75% in relative humidity.

Aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or oil spray.

*Do not store aluminum electrolytic capacitors in an environment full of hazardous gas (hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas).

*Aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or radiation.

(7) Fumigation and halogenated flame retardant

It may cause corrosion of internal electrodes, aluminum cases and terminal surface when the following conditions exist.

*Fumigation of wooden pallets before shipment to disinfect vermin.

*Existence of components or parts that contain halogenated flame retardant agent (bromine etc.) together with capacitors.

*When halogenated detergents of antiseptics for preventing infection of epidemic diseases contact directly to capacitors.

(8) PC board cleaning after soldering

Please consult us when cleaning is subjected.

♦ Guide to application except the above are described in our catalog and EIAJ RCR-2367C.

EIAJ RCR-2367C: "Safety Application Guide for fixed aluminum electrolytic capacitors for use in electronic equipment." Published by Japan Electronics and Information Technology Industries Association